Molecular mechanisms of the cardiovascular protective effects of polyphenols.
نویسندگان
چکیده
Epidemiological studies have reported a greater reduction in cardiovascular risk and metabolic disorders associated with diets rich in polyphenols. The antioxidant effects of polyphenols are attributed to the regulation of redox enzymes by reducing reactive oxygen species production from mitochondria, NADPH oxidases and uncoupled endothelial NO synthase in addition to also up-regulating multiple antioxidant enzymes. Although data supporting the effects of polyphenols in reducing oxidative stress are promising, several studies have suggested additional mechanisms in the health benefits of polyphenols. Polyphenols from red wine increase endothelial NO production leading to endothelium-dependent relaxation in conditions such as hypertension, stroke or the metabolic syndrome. Numerous molecules contained in fruits and vegetables can activate sirtuins to increase lifespan and silence metabolic and physiological disturbances associated with endothelial NO dysfunction. Although intracellular pathways involved in the endothelial effects of polyphenols are partially described, the molecular targets of these polyphenols are not completely elucidated. We review the novel aspects of polyphenols on several targets that could trigger the health benefits of polyphenols in conditions such as metabolic and cardiovascular disturbances.
منابع مشابه
Molecular mechanisms underlying gallic acid effects against cardiovascular diseases: An update review
Objective: The prevalence of cardiovascular diseases (CVDs) is growing. CVDs are the major cause of mortality and have become one of the most important health challenges in developing countries. Gallic acid (GA) is a natural phytochemical which has been widely used against multiple conditions. The present review was designed to evaluate molecular mechanisms underlying the prote...
متن کاملMolecular targets of tea polyphenols in the cardiovascular system.
Tea-derived polyphenols have attracted considerable attention in the prevention of cancer and cardiovascular diseases. In comparison to tumour cells, the elucidation of their molecular targets in cardiovascular relevant cells is still at the beginning. Although promising experimental and clinical data demonstrate protective effects for the cardiovascular system, little information is actually a...
متن کاملProtective effect of silymarin against chemical-induced cardiotoxicity
Cardiac disorders remain one of the most important causes of death in the world. Oxidative stress has been suggested as one of the molecular mechanisms involved in drug-induced cardiac toxicity. Recently, several natural products have been utilized in different studies with the aim to protect the progression of oxidative stress-induced cardiac disorders. There is a large body of evidence that a...
متن کاملNatural Polyphenols and Spinal Cord Injury
Polyphenols have been shown to have some of the neuroprotective effects against neurodegenerative diseases. These effects are attributed to a variety of biological activities, including free radical scavenging/antioxidant and anti-inflammatory and anti-apoptotic activities. In this regard, many efforts have been made to study the effects of various well-known dietary polyphenols on spinal cord ...
متن کاملTherapeutic Potential of Polyphenols in Cardiac Fibrosis
Cardiac fibrosis, in response to injury and stress, is central to a broad constellation of cardiovascular diseases. Fibrosis decreases myocardial wall compliance due to extracellular matrix (ECM) accumulation, leading to impaired systolic and diastolic function and causing arrhythmogenesis. Although some conventional drugs, such as β-blockers and renin-angiotensin-aldosterone system (RAAS) inhi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The British journal of nutrition
دوره 108 9 شماره
صفحات -
تاریخ انتشار 2012